Review Article: Case studies in future trends of computational and experimental nanomechanics

With rapidly increasing numbers of studies of new and exotic material uses for perovskites and quasicrystals, these demand newer instrumentation and simulation developments to resolve the revealed complexities. One such set of observational mechanics at the nanoscale is presented here for somewhat s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 2017-11, Vol.35 (6)
Hauptverfasser: Gerberich, William, Tadmor, Ellad B., Kysar, Jeffrey, Zimmerman, Jonathan A., Minor, Andrew M., Szlufarska, Izabela, Amodeo, Jonathan, Devincre, Benoit, Hintsala, Eric, Ballarini, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With rapidly increasing numbers of studies of new and exotic material uses for perovskites and quasicrystals, these demand newer instrumentation and simulation developments to resolve the revealed complexities. One such set of observational mechanics at the nanoscale is presented here for somewhat simpler material systems. The expectation is that these approaches will assist those materials scientists and physicists needing to verify atomistic potentials appropriate to the nanomechanical understanding of increasingly complex solids. The five following segments from nine University, National and Industrial Laboratories both review and forecast where some of the important approaches will allow a confirming of how in situ mechanics and nanometric visualization might unravel complex phenomena. These address two-dimensional structures, temporal models for the nanoscale, atomistic and multiscale friction fundamentals, nanoparticle surfaces and interfaces and nanomechanical fracture measurements, all coupled to in situ observational techniques. Rapid future advances in the applicability of such materials science solutions appear guaranteed.
ISSN:0734-2101
1520-8559
DOI:10.1116/1.5003378