Understanding of a new approach for silicon nitride spacer etching using gaseous hydrofluoric acid after hydrogen ion implantation

Silicon nitride spacer etching is one of the most critical step for the fabrication of CMOS transistors in microelectronics. It is usually done by plasma etching using a fluorocarbon based chemistry. However, from the 14 nm technology node and beyond, this etching process no longer allows the etch s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2017-03, Vol.35 (2)
Hauptverfasser: Ah-Leung, Vincent, Pollet, Olivier, Possémé, Nicolas, Garcia Barros, Maxime, Rochat, Névine, Guedj, Cyril, Audoit, Guillaume, Barnola, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon nitride spacer etching is one of the most critical step for the fabrication of CMOS transistors in microelectronics. It is usually done by plasma etching using a fluorocarbon based chemistry. However, from the 14 nm technology node and beyond, this etching process no longer allows the etch specifications to be reached (nonformation of a foot, poor critical dimension control below 1 nm). To overcome this issue, a new process was developed. It consists of two steps: in a first step, the silicon nitride film is modified by light ion implantation (hydrogen), and then followed by a removal step of this modified film by hydrofluoric acid (HF). In this paper, the authors propose to remove the implanted/modified silicon nitride using gaseous HF and understand the associated etching mechanisms using infrared spectroscopy and x-ray photoelectron spectroscopy at different stages of the process sequence (after implantation/modification, gaseous HF process, and post-treatment).
ISSN:0734-2101
1520-8559
DOI:10.1116/1.4977077