Reduction of persistent photoconduction in Ge-Ga-In-O semiconductors by the incorporation of nitrogen
The effect of nitrogen incorporation in Ge-Ga-In-O (GGIO) semiconductors was investigated with respect to persistent photoconduction (PPC) and the associated thin-film transistor stability under negative bias illumination stress (NBIS). As the nitrogen partial pressure [pN2 = N2/(Ar + O2 + N2)] was...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2017-03, Vol.35 (2) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of nitrogen incorporation in Ge-Ga-In-O (GGIO) semiconductors was investigated with respect to persistent photoconduction (PPC) and the associated thin-film transistor stability under negative bias illumination stress (NBIS). As the nitrogen partial pressure [pN2 = N2/(Ar + O2 + N2)] was increased from 0% to 40% during the reactive sputter growth of GGIO layers, the PPC phenomenon became less pronounced and higher device stability under NBIS was observed. X-ray photoelectron spectroscopy analyses suggest that the concentration of light-sensitive oxygen vacant sites in the GGIO semiconductors decreases as a result of nitrogen incorporation, hence the reduced PPC and higher device stability under NBIS. |
---|---|
ISSN: | 2166-2746 2166-2754 |
DOI: | 10.1116/1.4974925 |