In situ near-edge x-ray absorption fine structure spectroscopy investigation of the thermal defunctionalization of graphene oxide

In situ near-edge x-ray absorption fine structure (NEXAFS) spectroscopy is used in conjunction with measurements of sheet resistance to examine the electronic structure recovery of graphene oxide upon thermal annealing. Several different defunctionalization regimes are identified with the initial re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2012-11, Vol.30 (6)
Hauptverfasser: Lee, Vincent, Dennis, Robert V., Jaye, Cherno, Wang, Xi, Fischer, Daniel A., Cartwright, Alexander N., Banerjee, Sarbajit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ near-edge x-ray absorption fine structure (NEXAFS) spectroscopy is used in conjunction with measurements of sheet resistance to examine the electronic structure recovery of graphene oxide upon thermal annealing. Several different defunctionalization regimes are identified with the initial removal of basal plane epoxide and hydroxyl functionalities and subsequent elimination of carboxylic acid moieties. The measured electrical conductivity is closely correlated to recovery of the conjugated π structure. A pronounced broadening of the C K-edge π* resonance is observed upon annealing and is ascribed to the superposition of the NEXAFS signatures of sp 2-hybridized domains of varying dimensionality. Such incipient conjugated domains generated upon thermal defunctionalization mediate variable range hopping transport and further lead to an increase in the electrical conductance. Finally, both C K-edge and O K-edge spectra suggest that ring ether functionalities such as pyrans or furans and/or 1,2- and 1,4-quinones are stabilized at higher temperatures.
ISSN:2166-2746
1520-8567
2166-2754
DOI:10.1116/1.4766325