Directed assembly in epitaxial zinc oxide films on focused ion beam modified sapphire substrates
A new method for directed self-assembly using focused ion beam (FIB) and physical vapor deposition is presented. The high resolution and site-specific patterning capabilities of FIB are coupled with the self-assembly process in heteroepitaxial thin film growth. An efficient FIB-induced damage mechan...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2012-01, Vol.30 (1), p.010605-010605-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new method for directed self-assembly using focused ion beam (FIB) and physical vapor deposition is presented. The high resolution and site-specific patterning capabilities of FIB are coupled with the self-assembly process in heteroepitaxial thin film growth. An efficient FIB-induced damage mechanism is exploited to pattern amorphous regions in sapphire substrates which direct the subsequent assembly of a sputter-deposited zinc oxide film. This novel approach allows for the fabrication of in-plane nano- to microscale heterostructures comprising epitaxial regions with high strain and defect density that are separated by regions of randomly oriented (in-plane) grains with much lower strain and defect density. |
---|---|
ISSN: | 1071-1023 2166-2746 1520-8567 2166-2754 |
DOI: | 10.1116/1.3672006 |