Towards an all-track 300 mm process for directed self-assembly
This study modifies the authors’ previously reported directed self-assembly (DSA) process of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) in order to meet the throughput and material-related requirements of a semiconductor manufacturing environment. It is demonstrated that all of the bott...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2011-11, Vol.29 (6), p.06F203-06F203-6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study modifies the authors’ previously reported directed self-assembly (DSA) process of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) in order to meet the throughput and material-related requirements of a semiconductor manufacturing environment. It is demonstrated that all of the bottleneck steps in the authors’ DSA process, including the deposition of the cross-linkable mat and the deposition of the brush layer, can be done in minutes on a hot plate in an N2 atmosphere, which simulates the processing environment of a lithography track module. A 25-nm-pitch pattern resulting from a 4:1 density multiplication was demonstrated with a manufacturing-compatible organic solvent. A preliminary uniformity study on 300 mm wafers was also presented. The modified DSA process presents a viable solution to some of the anticipated throughput-related challenges to DSA commercialization and thus, brings integration of DSA within reach of the semiconductor manufacturing industry. |
---|---|
ISSN: | 1071-1023 2166-2746 1520-8567 2166-2754 |
DOI: | 10.1116/1.3644341 |