Gigahertz surface acoustic wave generation on ZnO thin films depositedby radio frequency magnetron sputtering on III-V semiconductor substrates

The authors demonstrate 1.6 GHz surface acoustic wave (SAW) generation using interdigital transducers patterned by e-beam lithography on a thin ZnO piezoelectric film deposited on an InP substrate. The highly oriented, dense, and fine-grain ZnO film with high resistivity was deposited by radio frequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2008-11, Vol.26 (6), p.1848-1851
Hauptverfasser: Wang, Qi Jie, Pflügl, Christian, Andress, William F., Ham, Donhee, Capasso, Federico, Yamanishi, Masamichi
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors demonstrate 1.6 GHz surface acoustic wave (SAW) generation using interdigital transducers patterned by e-beam lithography on a thin ZnO piezoelectric film deposited on an InP substrate. The highly oriented, dense, and fine-grain ZnO film with high resistivity was deposited by radio frequency magnetron sputtering and was characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and a four-point probe station. The acoustic wavelength of the 1.6 GHz SAW generated by exciting the interdigital transducer on Zn O ∕ In P with a microwave signal is 1.6 μ m . This SAW filter device could be monolithically integrated with optoelectronic devices, opening new opportunities to use SAWs for applications such as gigahertz-frequency filters on optoelectronic devices and novel widely tunable quantum cascade lasers.
ISSN:1071-1023
1520-8567
DOI:10.1116/1.2993176