Frequency-dependent conductivity of concentrated electrolytes: A stochastic density functional theory
The response of ionic solutions to time-varying electric fields, quantified by a frequency-dependent conductivity, is essential in many electrochemical applications. Yet, it constitutes a challenging problem due to the combined effect of Coulombic interactions, hydrodynamics, and thermal fluctuation...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-12, Vol.161 (24) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The response of ionic solutions to time-varying electric fields, quantified by a frequency-dependent conductivity, is essential in many electrochemical applications. Yet, it constitutes a challenging problem due to the combined effect of Coulombic interactions, hydrodynamics, and thermal fluctuations. Here, we study the frequency-dependent conductivity of ionic solutions using a stochastic density functional theory. In the limit of small concentrations, we recover the classical Debye and Falkenhagen (DF) result, predicting an increase in conductivity with field frequency. At higher concentrations, we use a modified Coulomb interaction potential that accounts for the hard-core repulsion between the ions, which was recently employed in the zero-frequency case. Consequently, we extend the DF result to concentrated electrolytes. We discuss experimental and numerical studies and the complexity of observing the DF effect in such setups. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0236073 |