Hovering flapping wings with dynamic twist

The role of (active) dynamic wing twist on aerodynamic performance of three-dimensional hovering flapping flight is explored using numerical simulations. A variety of cases with different pitch angles and with (flexible wings) or without (rigid wings) dynamic twist are compared. The results show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Hauptverfasser: Bouard, Florian, Jardin, Thierry, David, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of (active) dynamic wing twist on aerodynamic performance of three-dimensional hovering flapping flight is explored using numerical simulations. A variety of cases with different pitch angles and with (flexible wings) or without (rigid wings) dynamic twist are compared. The results show that changes in aerodynamic performance due to dynamic twist are comparable to those obtained without twist (rigid wing cases) by pitching the whole wing and that lift and lift-to-power ratio generally collapse onto a single curve when plotted as a function of the mid-stroke pitch angle at 2/3 wing radius. However, in some cases dynamic twist yields enhanced time-averaged efficiency. Using the force and power partitioning method, it is shown that this enhancement results from the absence of vortical structures near the wing root lower surface and to the presence of an extended leading edge vortex on the wing upper surface, when compared to the most efficient rigid wing case. These differences in flow topology lead to enhanced lift during the early phase of the strokes without changes in power consumption.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0234656