Enhancing accuracy in forgery signature detection: Deep learning approaches with support vector machines

To detect forgeries in signature images using a state-of-the-art deep learning Support Vector Machine (SVM) algorithm based on parameters extracted from the data set. 44 samples total are used in the study, which is split into two groups of 22. Group 1 utilizes CNN-xg, whereas Group 2 employs SVM. C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jayaprakash, P., Ramkumar, G., Christy, S., Poovizhi, T., Selvaperumal, S. K., Lakshamanan, R., Gladith, N. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To detect forgeries in signature images using a state-of-the-art deep learning Support Vector Machine (SVM) algorithm based on parameters extracted from the data set. 44 samples total are used in the study, which is split into two groups of 22. Group 1 utilizes CNN-xg, whereas Group 2 employs SVM. Colab software specialized for machine learning is used to run the code. According to simulation findings, the CNN-xg Algorithm obtains a greater reliability of 96.82%, while the SVM achieves reliability of 84.80%; both algorithms have the same significance values of 0.0004 (p < 0.05). CNN-xg identifies forged signatures in the provided dataset more correctly than SVM, demonstrating superior performance.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0229469