FeS2/SnS2@C with mosaic-like heterointerface as robust sodium anode
Sodium-ion batteries (SIBs) have been widely researched due to their abundant resource and inherent safety. However, the major challenge for further commercialization of SIBs is the absence of low-priced anode electrodes with high reversible capacity and durability. Herein, a hierarchical heterogene...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-09, Vol.125 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sodium-ion batteries (SIBs) have been widely researched due to their abundant resource and inherent safety. However, the major challenge for further commercialization of SIBs is the absence of low-priced anode electrodes with high reversible capacity and durability. Herein, a hierarchical heterogeneous structure of FeS2/SnS2@C nanocubes with rich two-dimensional mosaic-like heterointerface and N/S co-doped carbon wrapping is constructed and synthesized, to achieve ultrahigh reversible capacity and long cycling stability as anode of SIBs. Combining x-ray photoelectron spectroscopy, ion diffusion kinetic analysis, and in situ x-ray diffraction, the exquisite hierarchical heterogeneous structure of FeS2/SnS2@C could promote charge/electrons transfer and accelerate ion diffusion kinetics. As expected, the FeS2/SnS2@C anode shows superior reversible capacity (867.5 mA h g−1 at 0.1 A g−1), good rate performance (718.9 mA h g−1 at 5.0 A g−1), and long cycle stability (738.0 mA h g−1 after 1200 cycles at 5.0 A g−1) with Na metal as counter electrode. This work proves that the effectiveness of heterojunction interfaces for promoting Na+ diffusion is highlighted by such capabilities. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0226473 |