Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector
Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-08, Vol.125 (8) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Zhao, Xiao Wang, Shimao Song, Yanan Aoki, Toru Gnatyuk, Volodymyr You, Libing Deng, Zanhong Tao, Ruhua Fang, Xiaodong Meng, Gang |
description | Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging. |
doi_str_mv | 10.1063/5.0224223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0224223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095256319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlUI0H01mstRiVSjoQrcOmcybNqVNapKK9dcbbdeuHhfOvQ8OQueMXjOqxI28ppyPOBcHaMBoVRHBWH2IBpRSQZSW7BidpLQoUXIhBuh9EgG-nZ9hHzyJpnMmu0_AEWxYtc6XFDx2Hs_dbE7WEPsQV8ZbwOP00t5FgVMpLwHbuE3ZLPFXGdniDjLYHOIpOurNMsHZ_g7R2-T-dfxIps8PT-PbKbGs5pmYViuQFfS6r6Xp1IhpXtWSWiMptRVYzUQFqmegulYBBWGNYUK0VoHSwMQQXex21zF8bCDlZhE20ZeXjaBacqkE04W63FE2hpQi9M06upWJ24bR5ldfI5u9vsJe7dhkXf6z8A_8A9Lob9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095256319</pqid></control><display><type>article</type><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><source>AIP Journals Complete</source><creator>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</creator><creatorcontrib>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</creatorcontrib><description>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0224223</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier density ; Crystal defects ; Dark current ; Freezing ; Ion migration ; Liquid nitrogen ; Photoelectric emission ; Photoexcitation ; Photoluminescence ; Radiation dosage ; Radiative recombination ; Room temperature ; Single crystals ; X ray detectors ; X ray imagery</subject><ispartof>Applied physics letters, 2024-08, Vol.125 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</cites><orcidid>0000-0002-3365-8963 ; 0000-0002-7357-2697 ; 0000-0002-6106-2921 ; 0000-0003-3487-9167 ; 0000-0002-6107-3962 ; 0000-0001-6412-2064 ; 0000-0002-5844-2712 ; 0000-0002-4495-6130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0224223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Wang, Shimao</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Aoki, Toru</creatorcontrib><creatorcontrib>Gnatyuk, Volodymyr</creatorcontrib><creatorcontrib>You, Libing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Tao, Ruhua</creatorcontrib><creatorcontrib>Fang, Xiaodong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><title>Applied physics letters</title><description>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</description><subject>Carrier density</subject><subject>Crystal defects</subject><subject>Dark current</subject><subject>Freezing</subject><subject>Ion migration</subject><subject>Liquid nitrogen</subject><subject>Photoelectric emission</subject><subject>Photoexcitation</subject><subject>Photoluminescence</subject><subject>Radiation dosage</subject><subject>Radiative recombination</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>X ray detectors</subject><subject>X ray imagery</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlUI0H01mstRiVSjoQrcOmcybNqVNapKK9dcbbdeuHhfOvQ8OQueMXjOqxI28ppyPOBcHaMBoVRHBWH2IBpRSQZSW7BidpLQoUXIhBuh9EgG-nZ9hHzyJpnMmu0_AEWxYtc6XFDx2Hs_dbE7WEPsQV8ZbwOP00t5FgVMpLwHbuE3ZLPFXGdniDjLYHOIpOurNMsHZ_g7R2-T-dfxIps8PT-PbKbGs5pmYViuQFfS6r6Xp1IhpXtWSWiMptRVYzUQFqmegulYBBWGNYUK0VoHSwMQQXex21zF8bCDlZhE20ZeXjaBacqkE04W63FE2hpQi9M06upWJ24bR5ldfI5u9vsJe7dhkXf6z8A_8A9Lob9o</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Zhao, Xiao</creator><creator>Wang, Shimao</creator><creator>Song, Yanan</creator><creator>Aoki, Toru</creator><creator>Gnatyuk, Volodymyr</creator><creator>You, Libing</creator><creator>Deng, Zanhong</creator><creator>Tao, Ruhua</creator><creator>Fang, Xiaodong</creator><creator>Meng, Gang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0000-0002-7357-2697</orcidid><orcidid>https://orcid.org/0000-0002-6106-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-9167</orcidid><orcidid>https://orcid.org/0000-0002-6107-3962</orcidid><orcidid>https://orcid.org/0000-0001-6412-2064</orcidid><orcidid>https://orcid.org/0000-0002-5844-2712</orcidid><orcidid>https://orcid.org/0000-0002-4495-6130</orcidid></search><sort><creationdate>20240819</creationdate><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><author>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Crystal defects</topic><topic>Dark current</topic><topic>Freezing</topic><topic>Ion migration</topic><topic>Liquid nitrogen</topic><topic>Photoelectric emission</topic><topic>Photoexcitation</topic><topic>Photoluminescence</topic><topic>Radiation dosage</topic><topic>Radiative recombination</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>X ray detectors</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Wang, Shimao</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Aoki, Toru</creatorcontrib><creatorcontrib>Gnatyuk, Volodymyr</creatorcontrib><creatorcontrib>You, Libing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Tao, Ruhua</creatorcontrib><creatorcontrib>Fang, Xiaodong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiao</au><au>Wang, Shimao</au><au>Song, Yanan</au><au>Aoki, Toru</au><au>Gnatyuk, Volodymyr</au><au>You, Libing</au><au>Deng, Zanhong</au><au>Tao, Ruhua</au><au>Fang, Xiaodong</au><au>Meng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</atitle><jtitle>Applied physics letters</jtitle><date>2024-08-19</date><risdate>2024</risdate><volume>125</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0224223</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0000-0002-7357-2697</orcidid><orcidid>https://orcid.org/0000-0002-6106-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-9167</orcidid><orcidid>https://orcid.org/0000-0002-6107-3962</orcidid><orcidid>https://orcid.org/0000-0001-6412-2064</orcidid><orcidid>https://orcid.org/0000-0002-5844-2712</orcidid><orcidid>https://orcid.org/0000-0002-4495-6130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-08, Vol.125 (8) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0224223 |
source | AIP Journals Complete |
subjects | Carrier density Crystal defects Dark current Freezing Ion migration Liquid nitrogen Photoelectric emission Photoexcitation Photoluminescence Radiation dosage Radiative recombination Room temperature Single crystals X ray detectors X ray imagery |
title | Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20non-radiative%20recombination%20in%20high-performance%20CsPbBr3%20single%20crystal%20x-ray%20detector&rft.jtitle=Applied%20physics%20letters&rft.au=Zhao,%20Xiao&rft.date=2024-08-19&rft.volume=125&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0224223&rft_dat=%3Cproquest_cross%3E3095256319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095256319&rft_id=info:pmid/&rfr_iscdi=true |