Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector

Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-08, Vol.125 (8)
Hauptverfasser: Zhao, Xiao, Wang, Shimao, Song, Yanan, Aoki, Toru, Gnatyuk, Volodymyr, You, Libing, Deng, Zanhong, Tao, Ruhua, Fang, Xiaodong, Meng, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Applied physics letters
container_volume 125
creator Zhao, Xiao
Wang, Shimao
Song, Yanan
Aoki, Toru
Gnatyuk, Volodymyr
You, Libing
Deng, Zanhong
Tao, Ruhua
Fang, Xiaodong
Meng, Gang
description Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.
doi_str_mv 10.1063/5.0224223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0224223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095256319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0HAlUI0H01mstRiVSjoQrcOmcybNqVNapKK9dcbbdeuHhfOvQ8OQueMXjOqxI28ppyPOBcHaMBoVRHBWH2IBpRSQZSW7BidpLQoUXIhBuh9EgG-nZ9hHzyJpnMmu0_AEWxYtc6XFDx2Hs_dbE7WEPsQV8ZbwOP00t5FgVMpLwHbuE3ZLPFXGdniDjLYHOIpOurNMsHZ_g7R2-T-dfxIps8PT-PbKbGs5pmYViuQFfS6r6Xp1IhpXtWSWiMptRVYzUQFqmegulYBBWGNYUK0VoHSwMQQXex21zF8bCDlZhE20ZeXjaBacqkE04W63FE2hpQi9M06upWJ24bR5ldfI5u9vsJe7dhkXf6z8A_8A9Lob9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095256319</pqid></control><display><type>article</type><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><source>AIP Journals Complete</source><creator>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</creator><creatorcontrib>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</creatorcontrib><description>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0224223</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier density ; Crystal defects ; Dark current ; Freezing ; Ion migration ; Liquid nitrogen ; Photoelectric emission ; Photoexcitation ; Photoluminescence ; Radiation dosage ; Radiative recombination ; Room temperature ; Single crystals ; X ray detectors ; X ray imagery</subject><ispartof>Applied physics letters, 2024-08, Vol.125 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</cites><orcidid>0000-0002-3365-8963 ; 0000-0002-7357-2697 ; 0000-0002-6106-2921 ; 0000-0003-3487-9167 ; 0000-0002-6107-3962 ; 0000-0001-6412-2064 ; 0000-0002-5844-2712 ; 0000-0002-4495-6130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0224223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Wang, Shimao</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Aoki, Toru</creatorcontrib><creatorcontrib>Gnatyuk, Volodymyr</creatorcontrib><creatorcontrib>You, Libing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Tao, Ruhua</creatorcontrib><creatorcontrib>Fang, Xiaodong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><title>Applied physics letters</title><description>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</description><subject>Carrier density</subject><subject>Crystal defects</subject><subject>Dark current</subject><subject>Freezing</subject><subject>Ion migration</subject><subject>Liquid nitrogen</subject><subject>Photoelectric emission</subject><subject>Photoexcitation</subject><subject>Photoluminescence</subject><subject>Radiation dosage</subject><subject>Radiative recombination</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>X ray detectors</subject><subject>X ray imagery</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0HAlUI0H01mstRiVSjoQrcOmcybNqVNapKK9dcbbdeuHhfOvQ8OQueMXjOqxI28ppyPOBcHaMBoVRHBWH2IBpRSQZSW7BidpLQoUXIhBuh9EgG-nZ9hHzyJpnMmu0_AEWxYtc6XFDx2Hs_dbE7WEPsQV8ZbwOP00t5FgVMpLwHbuE3ZLPFXGdniDjLYHOIpOurNMsHZ_g7R2-T-dfxIps8PT-PbKbGs5pmYViuQFfS6r6Xp1IhpXtWSWiMptRVYzUQFqmegulYBBWGNYUK0VoHSwMQQXex21zF8bCDlZhE20ZeXjaBacqkE04W63FE2hpQi9M06upWJ24bR5ldfI5u9vsJe7dhkXf6z8A_8A9Lob9o</recordid><startdate>20240819</startdate><enddate>20240819</enddate><creator>Zhao, Xiao</creator><creator>Wang, Shimao</creator><creator>Song, Yanan</creator><creator>Aoki, Toru</creator><creator>Gnatyuk, Volodymyr</creator><creator>You, Libing</creator><creator>Deng, Zanhong</creator><creator>Tao, Ruhua</creator><creator>Fang, Xiaodong</creator><creator>Meng, Gang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0000-0002-7357-2697</orcidid><orcidid>https://orcid.org/0000-0002-6106-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-9167</orcidid><orcidid>https://orcid.org/0000-0002-6107-3962</orcidid><orcidid>https://orcid.org/0000-0001-6412-2064</orcidid><orcidid>https://orcid.org/0000-0002-5844-2712</orcidid><orcidid>https://orcid.org/0000-0002-4495-6130</orcidid></search><sort><creationdate>20240819</creationdate><title>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</title><author>Zhao, Xiao ; Wang, Shimao ; Song, Yanan ; Aoki, Toru ; Gnatyuk, Volodymyr ; You, Libing ; Deng, Zanhong ; Tao, Ruhua ; Fang, Xiaodong ; Meng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-ab96e57ef9f85ad641927850ca500c7ec9137e6f1e6db6e0e3caa133bc6e69e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Crystal defects</topic><topic>Dark current</topic><topic>Freezing</topic><topic>Ion migration</topic><topic>Liquid nitrogen</topic><topic>Photoelectric emission</topic><topic>Photoexcitation</topic><topic>Photoluminescence</topic><topic>Radiation dosage</topic><topic>Radiative recombination</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>X ray detectors</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Wang, Shimao</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Aoki, Toru</creatorcontrib><creatorcontrib>Gnatyuk, Volodymyr</creatorcontrib><creatorcontrib>You, Libing</creatorcontrib><creatorcontrib>Deng, Zanhong</creatorcontrib><creatorcontrib>Tao, Ruhua</creatorcontrib><creatorcontrib>Fang, Xiaodong</creatorcontrib><creatorcontrib>Meng, Gang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiao</au><au>Wang, Shimao</au><au>Song, Yanan</au><au>Aoki, Toru</au><au>Gnatyuk, Volodymyr</au><au>You, Libing</au><au>Deng, Zanhong</au><au>Tao, Ruhua</au><au>Fang, Xiaodong</au><au>Meng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector</atitle><jtitle>Applied physics letters</jtitle><date>2024-08-19</date><risdate>2024</risdate><volume>125</volume><issue>8</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0224223</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3365-8963</orcidid><orcidid>https://orcid.org/0000-0002-7357-2697</orcidid><orcidid>https://orcid.org/0000-0002-6106-2921</orcidid><orcidid>https://orcid.org/0000-0003-3487-9167</orcidid><orcidid>https://orcid.org/0000-0002-6107-3962</orcidid><orcidid>https://orcid.org/0000-0001-6412-2064</orcidid><orcidid>https://orcid.org/0000-0002-5844-2712</orcidid><orcidid>https://orcid.org/0000-0002-4495-6130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-08, Vol.125 (8)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0224223
source AIP Journals Complete
subjects Carrier density
Crystal defects
Dark current
Freezing
Ion migration
Liquid nitrogen
Photoelectric emission
Photoexcitation
Photoluminescence
Radiation dosage
Radiative recombination
Room temperature
Single crystals
X ray detectors
X ray imagery
title Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20non-radiative%20recombination%20in%20high-performance%20CsPbBr3%20single%20crystal%20x-ray%20detector&rft.jtitle=Applied%20physics%20letters&rft.au=Zhao,%20Xiao&rft.date=2024-08-19&rft.volume=125&rft.issue=8&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0224223&rft_dat=%3Cproquest_cross%3E3095256319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095256319&rft_id=info:pmid/&rfr_iscdi=true