Freezing non-radiative recombination in high-performance CsPbBr3 single crystal x-ray detector

Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-08, Vol.125 (8)
Hauptverfasser: Zhao, Xiao, Wang, Shimao, Song, Yanan, Aoki, Toru, Gnatyuk, Volodymyr, You, Libing, Deng, Zanhong, Tao, Ruhua, Fang, Xiaodong, Meng, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Though CsPbBr3 single crystals (SCs) possess intriguing photoelectronic properties for x/γ-ray detection, the serious ion migration and high thermally activated carrier concentration at room temperature (RT), typically associated with defect states in CsPbBr3 crystals, result in a high dark current and drift of baseline, hindering their potential applications. In this investigation, liquid nitrogen cooling is proposed to freeze deep-level defects in CsPbBr3 SCs, thereby suppressing the ion migrations and decreasing the thermally excited carrier concentration. Utilizing photoluminescence (PL) and time-resolved PL spectra, coupled with theoretical models for photoexcitation and photoemission processes, the freezing of deep-level defects at liquid nitrogen temperature (LNT) is confirmed, which is conducive to decreasing non-radiative recombination. At LNT, the CsPbBr3 SC exhibits a higher resistivity of 4.95 × 1011 Ω cm and a higher mobility–lifetime product of 9.54 × 10−3 cm2 V−1, in contrast to the RT values of 3.86 × 109 Ω cm and 3.67 × 10−3 cm2 V−1, respectively. Furthermore, the x-ray detector at LNT exhibits a high sensitivity of 9309 μC Gyair−1 cm−2 and an impressively low detection limit of 0.054 nGy s−1, which offers a route for obtaining highly sensitive x-ray detectors for applications including ultra-low dose radiation imaging.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0224223