Techno-economic, energy, and environmental impact assessment of hydrogen supply chain: A comparative study of large-scale production and long-distance transportation

Hydrogen energy has made significant progress as one of the technological pathways that can facilitate the green transformation of various sectors, including the chemical industry, steel production, transportation, and power generation. However, areas with high demand for hydrogen are typically loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2024-09, Vol.16 (5)
Hauptverfasser: Li, Miao, Ming, Pingwen, Jiao, Hongyu, Huo, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen energy has made significant progress as one of the technological pathways that can facilitate the green transformation of various sectors, including the chemical industry, steel production, transportation, and power generation. However, areas with high demand for hydrogen are typically located thousands of kilometers away from large-scale production facilities. Hydrogen transported from the most cost-competitive large production sites to areas that lack hydrogen resources requires converting gaseous hydrogen into a high-density liquid. Thus, global market trade is important for hydrogen carriers in long-distance and large-scale transportation. In this study, liquefied hydrogen (LH2) and ammonia (NH3), which are hydrogen-based energy carriers, are analyzed and compared in terms of economic costs, energy efficiency, and carbon dioxide (CO2) emissions. It has been demonstrated that the LH2 supply chain is more energy-efficient and has higher CO2 emissions compared to the NH3 supply chain. Furthermore, this study shows that the levelized cost of hydrogen transportation (LCoHT) delivered from Australia to Ningbo, China, is lower for NH3 (19.95 yuan/kg-H2) compared to LH2 (22.83 yuan/kg-H2). Meanwhile, the LCoHT for the two supply chains is in a similar range (27.82 yuan/kg-H2 and 21.53 yuan/kg-H2 for LH2 and NH3, respectively) from Norway to Ningbo, China. The impacts of important parameters on the LCoHT, energy efficiency, and CO2 emissions of the LH2/NH3 supply chain are also considered through a sensitivity analysis.
ISSN:1941-7012
1941-7012
DOI:10.1063/5.0223071