High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)
In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3121 |
creator | Neha Kumar, Manoj Singh, Sajjan |
description | In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article. |
doi_str_mv | 10.1063/5.0221602 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0221602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078779887</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-fa171fa281f8ea5dacceb69f93306bd4bdffcef3310f2bb7c0578ee0e47829bf3</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFYP_oMFLyqk7keS3Ryl9EMoeOnBW9hs3rfdkm7ibnLovze1PQ0MMwPPEPLM2YyzXH5kMyYEz5m4IROeZTxROc9vyYSxIk1EKn_uyUOMB8ZEoZSeEFi73Z5igN8BvD3RDgK24Wi8BWq8aU7RRTpE53c0uuPQmN61nrZIV8F0e_BAKxOhpksHTU0XiGB7ug3Gj72-DfR1tVxs3x7JHZomwtNVp2Q72vN1svlefc0_N0mXS5Gg4YqjEZqjBpPVxlqo8gILKVle1WlVI1pAKTlDUVXKskxpAAap0qKoUE7Jy2W2C-3IE_vy0A5hpIilZEorVWitxtT7JRWt6_95yi64owmnkrPy_GKZldcX5R-dN2V2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3078779887</pqid></control><display><type>conference_proceeding</type><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><source>AIP Journals Complete</source><creator>Neha ; Kumar, Manoj ; Singh, Sajjan</creator><contributor>Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</contributor><creatorcontrib>Neha ; Kumar, Manoj ; Singh, Sajjan ; Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</creatorcontrib><description>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0221602</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier mobility ; Energy gap ; Field effect transistors ; Graphene ; Semiconductor devices ; Silicon films ; Silicon transistors</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3121 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0221602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Kaur, Sarabpreet</contributor><contributor>Jindal, Pardeep Kumar</contributor><contributor>Singh, Sajjan</contributor><creatorcontrib>Neha</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Singh, Sajjan</creatorcontrib><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><title>AIP Conference Proceedings</title><description>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</description><subject>Carrier mobility</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Semiconductor devices</subject><subject>Silicon films</subject><subject>Silicon transistors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRsFYP_oMFLyqk7keS3Ryl9EMoeOnBW9hs3rfdkm7ibnLovze1PQ0MMwPPEPLM2YyzXH5kMyYEz5m4IROeZTxROc9vyYSxIk1EKn_uyUOMB8ZEoZSeEFi73Z5igN8BvD3RDgK24Wi8BWq8aU7RRTpE53c0uuPQmN61nrZIV8F0e_BAKxOhpksHTU0XiGB7ug3Gj72-DfR1tVxs3x7JHZomwtNVp2Q72vN1svlefc0_N0mXS5Gg4YqjEZqjBpPVxlqo8gILKVle1WlVI1pAKTlDUVXKskxpAAap0qKoUE7Jy2W2C-3IE_vy0A5hpIilZEorVWitxtT7JRWt6_95yi64owmnkrPy_GKZldcX5R-dN2V2</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Neha</creator><creator>Kumar, Manoj</creator><creator>Singh, Sajjan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240711</creationdate><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><author>Neha ; Kumar, Manoj ; Singh, Sajjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-fa171fa281f8ea5dacceb69f93306bd4bdffcef3310f2bb7c0578ee0e47829bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Semiconductor devices</topic><topic>Silicon films</topic><topic>Silicon transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neha</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Singh, Sajjan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neha</au><au>Kumar, Manoj</au><au>Singh, Sajjan</au><au>Kaur, Sarabpreet</au><au>Jindal, Pardeep Kumar</au><au>Singh, Sajjan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-07-11</date><risdate>2024</risdate><volume>3121</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221602</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3121 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0221602 |
source | AIP Journals Complete |
subjects | Carrier mobility Energy gap Field effect transistors Graphene Semiconductor devices Silicon films Silicon transistors |
title | High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20frequency%20performance%20analysis%20using%20simulation%20of%20Graphene%20based%20Field%20Effect%20Transistor%20(GFET)&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Neha&rft.date=2024-07-11&rft.volume=3121&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0221602&rft_dat=%3Cproquest_scita%3E3078779887%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078779887&rft_id=info:pmid/&rfr_iscdi=true |