High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)

In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neha, Kumar, Manoj, Singh, Sajjan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3121
creator Neha
Kumar, Manoj
Singh, Sajjan
description In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.
doi_str_mv 10.1063/5.0221602
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0221602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078779887</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-fa171fa281f8ea5dacceb69f93306bd4bdffcef3310f2bb7c0578ee0e47829bf3</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFYP_oMFLyqk7keS3Ryl9EMoeOnBW9hs3rfdkm7ibnLovze1PQ0MMwPPEPLM2YyzXH5kMyYEz5m4IROeZTxROc9vyYSxIk1EKn_uyUOMB8ZEoZSeEFi73Z5igN8BvD3RDgK24Wi8BWq8aU7RRTpE53c0uuPQmN61nrZIV8F0e_BAKxOhpksHTU0XiGB7ug3Gj72-DfR1tVxs3x7JHZomwtNVp2Q72vN1svlefc0_N0mXS5Gg4YqjEZqjBpPVxlqo8gILKVle1WlVI1pAKTlDUVXKskxpAAap0qKoUE7Jy2W2C-3IE_vy0A5hpIilZEorVWitxtT7JRWt6_95yi64owmnkrPy_GKZldcX5R-dN2V2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3078779887</pqid></control><display><type>conference_proceeding</type><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><source>AIP Journals Complete</source><creator>Neha ; Kumar, Manoj ; Singh, Sajjan</creator><contributor>Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</contributor><creatorcontrib>Neha ; Kumar, Manoj ; Singh, Sajjan ; Kaur, Sarabpreet ; Jindal, Pardeep Kumar ; Singh, Sajjan</creatorcontrib><description>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0221602</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier mobility ; Energy gap ; Field effect transistors ; Graphene ; Semiconductor devices ; Silicon films ; Silicon transistors</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3121 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0221602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Kaur, Sarabpreet</contributor><contributor>Jindal, Pardeep Kumar</contributor><contributor>Singh, Sajjan</contributor><creatorcontrib>Neha</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Singh, Sajjan</creatorcontrib><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><title>AIP Conference Proceedings</title><description>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</description><subject>Carrier mobility</subject><subject>Energy gap</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Semiconductor devices</subject><subject>Silicon films</subject><subject>Silicon transistors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRsFYP_oMFLyqk7keS3Ryl9EMoeOnBW9hs3rfdkm7ibnLovze1PQ0MMwPPEPLM2YyzXH5kMyYEz5m4IROeZTxROc9vyYSxIk1EKn_uyUOMB8ZEoZSeEFi73Z5igN8BvD3RDgK24Wi8BWq8aU7RRTpE53c0uuPQmN61nrZIV8F0e_BAKxOhpksHTU0XiGB7ug3Gj72-DfR1tVxs3x7JHZomwtNVp2Q72vN1svlefc0_N0mXS5Gg4YqjEZqjBpPVxlqo8gILKVle1WlVI1pAKTlDUVXKskxpAAap0qKoUE7Jy2W2C-3IE_vy0A5hpIilZEorVWitxtT7JRWt6_95yi64owmnkrPy_GKZldcX5R-dN2V2</recordid><startdate>20240711</startdate><enddate>20240711</enddate><creator>Neha</creator><creator>Kumar, Manoj</creator><creator>Singh, Sajjan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240711</creationdate><title>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</title><author>Neha ; Kumar, Manoj ; Singh, Sajjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-fa171fa281f8ea5dacceb69f93306bd4bdffcef3310f2bb7c0578ee0e47829bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Energy gap</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Semiconductor devices</topic><topic>Silicon films</topic><topic>Silicon transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neha</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Singh, Sajjan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neha</au><au>Kumar, Manoj</au><au>Singh, Sajjan</au><au>Kaur, Sarabpreet</au><au>Jindal, Pardeep Kumar</au><au>Singh, Sajjan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-07-11</date><risdate>2024</risdate><volume>3121</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present paper, Graphene Field Effect Transistor model is studied. Firstly, a 5nm thick poly-silicon film is deposited and Graphene structure is generated. Graphene, with carrier mobility at 10,000cm2/V-s is the channel material. The output and transfer curves are drawn to plot characteristics. Pristine Graphene is treated as a semi-metal with zero band gap. The lesser band gap, causes a relatively low ION/IOFF as compared to the Silicon transistor, therefore in digital, GFET is still lagging behind Silicon BJT. High mobility is more suited for RF applications. Therefore, the maximum cut-off frequency (fT) and maximum oscillation frequency (fmax) are taken into consideration as the FOMs’ parameters in the current article.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221602</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3121 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0221602
source AIP Journals Complete
subjects Carrier mobility
Energy gap
Field effect transistors
Graphene
Semiconductor devices
Silicon films
Silicon transistors
title High frequency performance analysis using simulation of Graphene based Field Effect Transistor (GFET)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20frequency%20performance%20analysis%20using%20simulation%20of%20Graphene%20based%20Field%20Effect%20Transistor%20(GFET)&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Neha&rft.date=2024-07-11&rft.volume=3121&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0221602&rft_dat=%3Cproquest_scita%3E3078779887%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3078779887&rft_id=info:pmid/&rfr_iscdi=true