Compressive strain-induced enhancement of thermoelectric performance in lead-free halide double perovskites K2SnX6 (X = I, Br, Cl)
Exploring thermoelectric materials with high performance and low cost is of great importance in mitigating environmental and energy challenges. Here, we provide an atomistic insight into strain-induced enhancement of thermoelectric performance in potassium-based halide double perovskite K2SnX6 (X = ...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-07, Vol.125 (4) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploring thermoelectric materials with high performance and low cost is of great importance in mitigating environmental and energy challenges. Here, we provide an atomistic insight into strain-induced enhancement of thermoelectric performance in potassium-based halide double perovskite K2SnX6 (X = I, Br, Cl) using first-principles calculations. To get reliable predictions for transport properties, we adopt advanced methods such as self-energy relaxation time approximation for electron transport and unified theory for lattice transport in combination with self-consistent phonon approach. Our calculations highlight a promising thermoelectric figure of merit ZT over 1.01 in K2SnI6 when applying a compressive strain of −6%, being tenfold larger than those in the uncompressed compounds, suggesting that compressing is an effective way to enhance the thermoelectric performance of halide double perovskites. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0217146 |