Compressive strain-induced enhancement of thermoelectric performance in lead-free halide double perovskites K2SnX6 (X = I, Br, Cl)

Exploring thermoelectric materials with high performance and low cost is of great importance in mitigating environmental and energy challenges. Here, we provide an atomistic insight into strain-induced enhancement of thermoelectric performance in potassium-based halide double perovskite K2SnX6 (X = ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-07, Vol.125 (4)
Hauptverfasser: Jong, Un-Gi, Kim, Su-Hyang, Ham, Ryong-Wan, Ri, Song, Ri, Ryong-Jin, Yu, Chol-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exploring thermoelectric materials with high performance and low cost is of great importance in mitigating environmental and energy challenges. Here, we provide an atomistic insight into strain-induced enhancement of thermoelectric performance in potassium-based halide double perovskite K2SnX6 (X = I, Br, Cl) using first-principles calculations. To get reliable predictions for transport properties, we adopt advanced methods such as self-energy relaxation time approximation for electron transport and unified theory for lattice transport in combination with self-consistent phonon approach. Our calculations highlight a promising thermoelectric figure of merit ZT over 1.01 in K2SnI6 when applying a compressive strain of −6%, being tenfold larger than those in the uncompressed compounds, suggesting that compressing is an effective way to enhance the thermoelectric performance of halide double perovskites.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0217146