The flame macrostructure and thermoacoustic instability in a centrally staged burner operating in different pilot stage equivalence ratios
The main focus of this paper is to discover the link between flame macrostructure and thermoacoustic instability in a centrally staged swirl burner. In practical combustors, the flow rate in the pilot stage is much smaller than that in the main stage. However, the modification in the pilot stage cou...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-07, Vol.36 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main focus of this paper is to discover the link between flame macrostructure and thermoacoustic instability in a centrally staged swirl burner. In practical combustors, the flow rate in the pilot stage is much smaller than that in the main stage. However, the modification in the pilot stage could alter the flame macrostructure while maintaining a similar total flow rate. Therefore, the thermoacoustic instability was examined at different flame macrostructures by varying the pilot stage equivalence ratio under identical main stage inlet conditions. High-frequency planar laser measurements and chemiluminescence measurement were conducted to enhance spatial and temporal accuracy, providing a more comprehensive understanding of thermoacoustic instability. Two different flame macrostructures, S-type and I-type flames, were identified based on the preheating zone distribution. They exhibit distinct thermoacoustic instabilities, with the I-type flames demonstrating more intense instability than S-type flames. The results indicate that the variation of flame macrostructure influences the coupling of flame heat release and flow field. Specifically, the preheating zone and heat release of I-type flames exhibit greater sensitivity to flow field fluctuations, resulting in a more intense and complex fluctuation of the flame. This discrepancy leads to variations in thermoacoustic instability intensity, as well as the changes in the phase coupling between heat release and acoustic pressure, which in turn impact the total Rayleigh index. Meanwhile, significant differences exist in the distribution pattern and range of flow field fluctuations between I-type and S-type flames. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0216720 |