How the non-metricity of the connection arises naturally in the classical theory of gravity
Spacetime geometry is described by two–a priori independent–geometric structures: the symmetric connection Γ and the metric tensor g. Metricity condition of Γ (i.e. ∇g = 0) is implied by the Palatini variational principle, but only when the matter fields belong to an exceptional class. In case of a...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2024-09, Vol.65 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spacetime geometry is described by two–a priori independent–geometric structures: the symmetric connection Γ and the metric tensor g. Metricity condition of Γ (i.e. ∇g = 0) is implied by the Palatini variational principle, but only when the matter fields belong to an exceptional class. In case of a generic matter field, Palatini implies non-metricity of Γ. Traditionally, instead of the (first order) Palatini principle, we use in this case the (second order) Hilbert principle, assuming metricity condition a priori. Unfortunately, the resulting right-hand side of the Einstein equations does not coincide with the matter energy-momentum tensor. We propose to treat seriously the Palatini-implied non-metric connection. The conventional Einstein’s theory, rewritten in terms of this object, acquires a much simpler and universal structure. This approach opens a room for the description of the large scale effects in General Relativity (dark matter?, dark energy?), without resorting to purely phenomenological terms in the Lagrangian of gravitational field. All theories discussed in this paper belong to the standard General Relativity Theory, the only non-standard element being their (much simpler) mathematical formulation. As a mathematical bonus, we propose a new formalism in the calculus of variations, because in case of hyperbolic field theories the standard approach leads to nonsense conclusions. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0208497 |