Simulation of light propagation in medium with an ultrasonically induced refractive index gradient
Modulation of the refractive index in a medium by external stimuli enables fast and reversible control of light propagation. This technology for controlling light has led to new discoveries in a wide range of research fields from physics to life sciences and has played a major role in the developmen...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-05, Vol.135 (19) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modulation of the refractive index in a medium by external stimuli enables fast and reversible control of light propagation. This technology for controlling light has led to new discoveries in a wide range of research fields from physics to life sciences and has played a major role in the development of photonics devices. In this article, we focus on ultrasound as an external stimulus and have devised a method to control the refractive index of a medium using ultrasound. Our research group has previously discovered that a giant refractive-index gradient (Δn on the order of 10−2) was induced when water was irradiated with high-frequency (100 MHz range), high-intensity (on the order of MPa) ultrasound. Here, we report ray-tracing simulations in a medium with a refractive-index gradient induced by ultrasonic radiation. A numerical model of the refractive-index gradient was developed based on the experimental data, and ray-tracing simulations were performed using the Euler–Lagrange equation. The ray-tracing simulation results were close numerically to the profiles of the laser beam observed in the experiment when the laser beam was incident on the refractive-index-gradient medium. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0207446 |