Nonlinear Hall effect and scaling law in Sb-doped topological insulator MnBi4Te7

The nonlinear Hall effect (NLHE), as a new member of Hall effect family, has been realized in many materials, attracting a great deal of attention. Here, we report the observation of NLHE in magnetic topological insulator Sb-doped MnBi4Te7 flakes. The NLHE generation efficiency can reach up to 0.06 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-04, Vol.124 (15)
Hauptverfasser: Wang, Shaoyu, Li, Xiubing, Zhang, Heng, Chen, Bo, Xie, Hangkai, Li, Congcong, Fei, Fucong, Zhang, Shuai, Song, Fengqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear Hall effect (NLHE), as a new member of Hall effect family, has been realized in many materials, attracting a great deal of attention. Here, we report the observation of NLHE in magnetic topological insulator Sb-doped MnBi4Te7 flakes. The NLHE generation efficiency can reach up to 0.06 V−1, which is comparable to that observed in MnBi2Te4. Differently, the NLHE can survive up to 200 K, much larger than the magnetic transition temperature. We further study the scaling behavior of the NLHE with longitudinal conductivity. The linear relationship with opposite slope when temperature is below and above the magnetic transition temperature is uncovered. It reveals that the NLHE originates from skew scattering. Our work provides a platform to search NLHE with larger generation efficiency at higher temperatures.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0202692