Chiral and directional optical emission from a dipole source coupled to a helical plasmonic antenna
Plasmonic antennas with helical geometry can convert linearly polarized dipole radiation into purely circularly polarized far-fields, and vice versa. Besides large Purcell enhancements, they possess a wide tunability due to the geometry dependence of their resonant modes. Here, the coupling of a dip...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-06, Vol.124 (23) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plasmonic antennas with helical geometry can convert linearly polarized dipole radiation into purely circularly polarized far-fields, and vice versa. Besides large Purcell enhancements, they possess a wide tunability due to the geometry dependence of their resonant modes. Here, the coupling of a dipole emitter embedded in a thin film to plasmonic single and double helices is numerically studied. Using a higher-order finite element method (FEM), the wavelength dependent Purcell enhancement of a dipole with different positions and orientations is calculated and the far-fields with respect to their chirality and radiation patterns are analyzed. Both single and double helices demonstrate highly directional and circularly polarized far-fields for resonant excitation but with significantly improved directional radiation for the case of double helices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0201748 |