Defect control strategies for Al1−xGdxN alloys

Tetrahedrally bonded III-N and related alloys are useful for a wide range of applications from optoelectronics to dielectric electromechanics. Heterostructural AlN-based alloys offer unique properties for piezoelectrics, ferroelectrics, and other emerging applications. Atomic-scale point defects and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-04, Vol.135 (15)
Hauptverfasser: Lee, Cheng-Wei, Din, Naseem Ud, Yazawa, Keisuke, Nemeth, William, Smaha, Rebecca W., Haegel, Nancy M., Gorai, Prashun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetrahedrally bonded III-N and related alloys are useful for a wide range of applications from optoelectronics to dielectric electromechanics. Heterostructural AlN-based alloys offer unique properties for piezoelectrics, ferroelectrics, and other emerging applications. Atomic-scale point defects and impurities can strongly affect the functional properties of materials, and therefore, it is crucial to understand the nature of these defects and the mechanisms through which their concentrations may be controlled in AlN-based alloys. In this study, we employ density functional theory with alloy modeling and point defect calculations to investigate native point defects and unintentional impurities in Al 1 − xGd xN alloys. Among the native defects that introduce deep midgap states, nitrogen vacancies (V N) are predicted to be in the highest concentration, especially under N-poor growth conditions. We predict and experimentally demonstrate that V N formation can be suppressed in thin films through growth in N-rich environments. We also find that Al 1 − xGd xN alloys are prone to high levels of unintentional O incorporation, which indirectly leads to even higher concentrations of deep defects. Growth under N-rich/reducing conditions is predicted to minimize and partially alleviate the effects of O incorporation. The results of this study provide valuable insights into the defect behavior in wurtzite nitride-based alloys, which can guide their design and optimization for various applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0199191