Realization of single MoTe2 crystal in-plane TFET by laser-induced doping technique

Significant recent progress has been achieved in the fabrication of tunnel field-effect transistors (TFETs) utilizing transition metal dichalcogenides (TMDCs) materials, particularly focusing on out-of-plane heterojunction structures. Due to the inherent limitations of doping technology for TMDCs, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-05, Vol.124 (21)
Hauptverfasser: Xie, Tianshun, Ke, Mengnan, Ueno, Keiji, Watanabe, Kenji, Taniguchi, Takashi, Aoki, Nobuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant recent progress has been achieved in the fabrication of tunnel field-effect transistors (TFETs) utilizing transition metal dichalcogenides (TMDCs) materials, particularly focusing on out-of-plane heterojunction structures. Due to the inherent limitations of doping technology for TMDCs, there have been limited investigations into the development of in-plane TFETs. In this study, we present the realization of an in-plane TFET based on a single crystal of multilayer MoTe2, utilizing a regioselective doping technique through laser irradiation. By constructing a p+/i/n++ homojunction structure, a band-to-band tunneling dominated performance with a minimum subthreshold swing value of 75 mV/dec and an on/off ratio of 105 was obtained at a low temperature. Furthermore, the “OFF” and “ON” state currents of the TFET operation were smaller than the gated diode operation in this structure, which is consistent with the tunneling mechanism.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0197172