A new definition of conditional expectation for finite uncertainty spaces
This paper continues the authors’ previous work on developing a theory of conditional expectations in uncertainty spaces. In a previous paper, they adopted the standard definition from classical probability by defining the conditional expectation E[X|G] of an uncertain variable X with respect to a σ...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper continues the authors’ previous work on developing a theory of conditional expectations in uncertainty spaces. In a previous paper, they adopted the standard definition from classical probability by defining the conditional expectation E[X|G] of an uncertain variable X with respect to a σ-algebra G as a G-measurable function provided by a version of the Radon-Nikodym Theorem for uncertainty spaces. In this current work, a definition is provided by minimizing the expected mean squared error (X − Y)2 among G-measurable functions Y. The development, adopted from an existing work on non-additive probability spaces and repurposed for the current setting, similarly assumes a finite sample space and hence finitely many atoms for G. It also justifies the existence of conditional expectations and discusses some of their properties. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0193426 |