A new definition of conditional expectation for finite uncertainty spaces

This paper continues the authors’ previous work on developing a theory of conditional expectations in uncertainty spaces. In a previous paper, they adopted the standard definition from classical probability by defining the conditional expectation E[X|G] of an uncertain variable X with respect to a σ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frondoza, Michael, Eden, Richard, Lara-Tuprio, Elvira de
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper continues the authors’ previous work on developing a theory of conditional expectations in uncertainty spaces. In a previous paper, they adopted the standard definition from classical probability by defining the conditional expectation E[X|G] of an uncertain variable X with respect to a σ-algebra G as a G-measurable function provided by a version of the Radon-Nikodym Theorem for uncertainty spaces. In this current work, a definition is provided by minimizing the expected mean squared error (X − Y)2 among G-measurable functions Y. The development, adopted from an existing work on non-additive probability spaces and repurposed for the current setting, similarly assumes a finite sample space and hence finitely many atoms for G. It also justifies the existence of conditional expectations and discusses some of their properties.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0193426