Unraveling evolution of microstructural domains in the heteroepitaxy of β-Ga2O3 on sapphire
Addressing microstructural domain disorders within epitaxial β-Ga2O3 is critical for phase engineering and property improvement, whereas the associated evolution of β-Ga2O3 heteroepitaxial domains remains largely unexplored. In this Letter, we conducted a quantitative investigation of microstructura...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-03, Vol.124 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Addressing microstructural domain disorders within epitaxial β-Ga2O3 is critical for phase engineering and property improvement, whereas the associated evolution of β-Ga2O3 heteroepitaxial domains remains largely unexplored. In this Letter, we conducted a quantitative investigation of microstructural domains in (−201)-oriented epitaxial β-Ga2O3 films grown on (0001) sapphire using halide vapor-phase epitaxy technique with a β-(Al0.57Ga0.43)2O3 buffer layer. The distinct split of x-ray diffraction rocking curves for (−201) β-Ga2O3 grown below 950 °C was observed, indicative of domain tilt disorders. As quantitatively assessed by transmission electron microscopy, the domain tilt angle significantly decreases from 2.33° to 0.90° along the [132] zone axis and from 2.3° to 0.56° along the [010] zone axis, respectively, as the growth temperature is elevated from 850 to 1100 °C. The reduction in tilt disorders is accompanied by the decrease in in-plane domain twist. It indicates that the elimination of small-angle domain boundaries is energetically favorable at high growth temperature above 1000 °C. The quantitative investigation on the evolution of domain disorders in β-Ga2O3 shed light on the pathway to improve epitaxial quality for cutting-edge power electronic and optoelectronic device applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0191831 |