Research and optimization of flow-induced vibrations in a water-cooled monochromator
To enhance the stability of the water-cooled double-crystal monochromator used at the BL17B beamline of the Shanghai Synchrotron Radiation Facility (SSRF), a study was conducted to optimize its cooling system’s flow-induced vibration. Through simulation and experimental verification, the researchers...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2024-03, Vol.95 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance the stability of the water-cooled double-crystal monochromator used at the BL17B beamline of the Shanghai Synchrotron Radiation Facility (SSRF), a study was conducted to optimize its cooling system’s flow-induced vibration. Through simulation and experimental verification, the researchers analyzed the vibration mechanism and implemented improvement measures. The results indicate that the elastic bellows greatly amplify flow-induced vibration, transmitting it to the first-crystal. By positioning the bellows closer to the crystal, the relative pitch angular vibration of the double-crystal was reduced by 17.5%, and the roll angular vibration decreased by 6.1%. Furthermore, changing the flow rate from 3 to 2.4 l/min further diminished the relative pitch angular vibration by 6.0% and the roll angular vibration by 7.9%. By effectively reducing flow-induced vibration in the water-cooled double-crystal monochromator, equipment stability is enhanced, and the relative angular vibration of the double-crystal has been reduced. This research provides a valuable method and approach for optimizing the stability of the monochromator and related equipment. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0191196 |