Non-radiative configurations of a few quantum emitters ensembles: Evolutionary optimization approach

Suppressing the spontaneous emission in quantum emitters ensembles (atoms) is one of the topical problems in quantum optics and quantum technology. While many approaches are based on utilizing the subradiance effect in ordered quantum emitters arrays, the ensemble configurations providing the minima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-02, Vol.124 (8)
Hauptverfasser: Volkov, Ilya, Mitsai, Stanislav, Zhogolev, Stepan, Kornovan, Danil, Sheremet, Alexandra, Savelev, Roman, Petrov, Mihail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppressing the spontaneous emission in quantum emitters ensembles (atoms) is one of the topical problems in quantum optics and quantum technology. While many approaches are based on utilizing the subradiance effect in ordered quantum emitters arrays, the ensemble configurations providing the minimal spontaneous emission rate are yet unknown. In this work, we employ the differential evolution algorithm to identify the optimal configurations of a few atomic ensembles that support quantum states with maximal radiative lifetime. We demonstrate that atoms tend to assemble mostly in quasi-regular structures with specific geometry, which strongly depends on the minimally allowed interatomic distance r min. While the discovered specific non-radiative realizations of small ensembles cannot be immediately predicted, there is particular correspondence to the non-radiative states in the atomic lattices. In particular, we have found that states inheriting their properties either from the bound states in the continuum or band edge states of infinite lattices dominate across a wide range of r min values. Additionally, we show that for small interatomic distances, the linear arrays with modulated spacing have the smallest radiative losses exponentially decreasing as the size of the ensemble increases.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0189405