Fabrication of quantum emitters in aluminum nitride by Al-ion implantation and thermal annealing

Single-photon emitters (SPEs) within wide-bandgap materials represent an appealing platform for the development of single-photon sources operating at room temperatures. Group III-nitrides have previously been shown to host efficient SPEs, which are attributed to deep energy levels within the large b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-03, Vol.124 (12)
Hauptverfasser: Nieto Hernández, E., Yağcı, H. B., Pugliese, V., Aprà, P., Cannon, J. K., Bishop, S. G., Hadden, J., Ditalia Tchernij, S., Olivero, P., Bennett, A. J., Forneris, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-photon emitters (SPEs) within wide-bandgap materials represent an appealing platform for the development of single-photon sources operating at room temperatures. Group III-nitrides have previously been shown to host efficient SPEs, which are attributed to deep energy levels within the large bandgap of the material, in a configuration that is similar to extensively investigated color centers in diamond. Anti-bunched emission from defect centers within gallium nitride and aluminum nitride (AlN) have been recently demonstrated. While such emitters are particularly interesting due to the compatibility of III-nitrides with cleanroom processes, the nature of such defects and the optimal conditions for forming them are not fully understood. Here, we investigate Al implantation on a commercial AlN epilayer through subsequent steps of thermal annealing and confocal microscopy measurements. We observe a fluence-dependent increase in the density of the emitters, resulting in the creation of ensembles at the maximum implantation fluence. Annealing at 600 °C results in the optimal yield in SPEs formation at the maximum fluence, while a significant reduction in SPE density is observed at lower fluences. These findings suggest that the mechanism of vacancy formation plays a key role in the creation of the emitters and open enticing perspectives in the defect engineering of SPEs in solid state.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0185534