An efficiently excited Eu3+ luminescent site formed in Eu,O-codoped GaN

For the development of III-nitride-semiconductor-based monolithic micro-light-emitting diode (LED) displays, Eu,O-codoped GaN (GaN:Eu,O) is a promising material candidate for the red LEDs. The luminescence efficiency of Eu-related emission strongly depends on the local atomic structure of Eu ions. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-02, Vol.14 (2), p.025044-025044-6
Hauptverfasser: Iwaya, Takenori, Ichikawa, Shuhei, Dierolf, Volkmar, Mitchell, Brandon, Austin, Hayley, Timmerman, Dolf, Tatebayashi, Jun, Fujiwara, Yasufumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the development of III-nitride-semiconductor-based monolithic micro-light-emitting diode (LED) displays, Eu,O-codoped GaN (GaN:Eu,O) is a promising material candidate for the red LEDs. The luminescence efficiency of Eu-related emission strongly depends on the local atomic structure of Eu ions. Our previous research has revealed that post-growth thermal annealing is an effective method for reconfiguring luminescent sites, leading to a significant increase in light output. We observed the preferential formation of a site with a peak at ∼2.004 eV by the annealing process. In this study, we demonstrate that it is a previously unidentified independent site (OMVPE-X) using combined excitation–emission spectroscopy and time-resolved photoluminescence measurements. In addition, we perform excitation power-dependent photoluminescence measurements and show that this OMVPE-X site dominates the emission at a low excitation power region despite its small relative abundance, suggesting a high excitation efficiency. Most importantly, applying our annealing technique to an LED exhibits a reasonably increased electroluminescence intensity associated with OMVPE-X, confirming that this site has a high excitation efficiency also under current injection. These results demonstrate the importance of OMVPE-X as a notable luminescent site for brighter and more efficient GaN:Eu,O-based LEDs.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0183774