Simulation study of a fast speed trench Schottky rectifier with an isolated gate

A novel trench Schottky rectifier with an isolated gate (IG-TSR) is proposed and investigated by simulation. It features an isolation of a trench MOS poly-gate from an anode metal in a conventional trench MOS barrier Schottky (TMBS) rectifier. In the proposed fabrication process, the isolation can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-11, Vol.13 (11), p.115017-115017-6
Hauptverfasser: Xu, Xianguo, Liu, Minqiang, Zeng, Chao, Chen, Wensuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel trench Schottky rectifier with an isolated gate (IG-TSR) is proposed and investigated by simulation. It features an isolation of a trench MOS poly-gate from an anode metal in a conventional trench MOS barrier Schottky (TMBS) rectifier. In the proposed fabrication process, the isolation can be created by modifying the layout pattern without any additional process step or manufacturing cost. Because of the isolation of the trench MOS poly-gate from the anode metal, the capacitance between the cathode and the anode (Cds) of the proposed IG-TSR decreases significantly, which results in a fast switching performance. According to the simulation results, IG-TSR holds a 17.4% reduction in reverse recovery time (Trr) and a 22.1% reduction in reverse recovery peak current (Irm) compared with TMBS, and other related forward and reverse performances are basically unchanged. Therefore, the proposed IG-TSR is a competitive device for high frequency and high efficiency applications in power systems.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0177402