Development of x-ray beam wavefront sensors for Advanced Photon Source upgrade

Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2023-12, Vol.94 (12)
Hauptverfasser: Frith, Matthew G., Highland, Matthew J., Qiao, Zhi, Rebuffi, Luca, Assoufid, Lahsen, Shi, Xianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam properties, including brightness, coherence, and stability. This paper presents two novel wavefront sensor prototypes developed at the APS using the coded-mask-based technique. The first is a compact design tailored for specific conditions and adaptability to diverse beamline configurations. The second, an adjustable zoom version, offers flexibility to accommodate a wide range of beam conditions. Both prototypes underwent rigorous testing at the APS 28-ID-B beamline and demonstrated their effectiveness in both absolute wavefront sensing and relative metrology modes. These results highlight their promise in beamline diagnostics, potentially enabling applications such as beamline auto-alignment and real-time wavefront manipulation.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0175811