On Kato’s conditions for the inviscid limit of the two-dimensional stochastic Navier-Stokes equation

We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-08, Vol.65 (8)
Hauptverfasser: Wang, Ya-guang, Zhao, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to the corresponding stochastic Euler equation holds in the energy space. We do not assume any smallness on the noise of the SNS equation.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0175063