On Kato’s conditions for the inviscid limit of the two-dimensional stochastic Navier-Stokes equation
We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2024-08, Vol.65 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behavior of solutions of the two-dimensional stochastic Navier-Stokes (SNS) equation with no-slip boundary condition in the small viscosity limit. Several equivalent dissipation conditions of the Kato type are derived to ensure that the convergence from the SNS equation to the corresponding stochastic Euler equation holds in the energy space. We do not assume any smallness on the noise of the SNS equation. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0175063 |