A wireless passive vibration sensing method for cryogenic applications
In this Letter, we developed a wireless passive vibration sensing method functional at cryogenic temperatures (−196 °C). Traditional vibration sensors are either inconvenient or complicated in cryogenic environments due to inaccessible working positions and weak low-temperature tolerances. We propos...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-11, Vol.123 (19) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Letter, we developed a wireless passive vibration sensing method functional at cryogenic temperatures (−196 °C). Traditional vibration sensors are either inconvenient or complicated in cryogenic environments due to inaccessible working positions and weak low-temperature tolerances. We propose a vibration measurement method that transfers a mechanical vibration to a wirelessly obtained return loss. Passive wireless monitoring is performed using a backscattering tag antenna integrated with a tunnel magnetoresistor. We fabricate and evaluate our vibration sensor at room temperature (24 °C) and cryogenic temperature (−196 °C) to verify the proposed design. Experimental analysis identified different vibration amplitudes with sensitivities of 4.61 dB/mm at 24 °C and 1.13 dB/mm at −196 °C. Further analysis shows that the vibrational frequency can be extrapolated. Our sensor provides a low-cost, robust, wireless, and passive vibration measurement method that is desirable in cryogenic applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0173778 |