Global stability of Bénard–Marangoni convection in an anisotropic porous medium
Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of bu...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-10, Vol.35 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Dev, Kapil Suthar, Om P. |
description | Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number,
Ma
L
c and
Ma
E
c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy. |
doi_str_mv | 10.1063/5.0172723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0172723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881518796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhYMoOI4uvEHAlUKP-elOOksdxlEYEUTXTTo_kqEnaZNuYXbewVN4Dm_iSexmZi0UVFF8vHr1ADjHaIYRo9fFDGFOOKEHYIJRKTLOGDscZ44yxig-BicprRFCVBA2Ac_LJtSygamTtWtct4XBwtufby-j_v38epRR-rfgHVTBfxjVueCh81CO5VLoYmidgm2IoU9wY7TrN6fgyMommbN9n4LXu8XL_D5bPS0f5jerTBFBuswORrHUhJdUKI4VpbqodY44zonldZmb2pBcKWyHJVGqplZjXQgprNGYGzoFFzvdNob33qSuWoc--uFkRcoSF7jkgg3U5Y5SMaQUja3a6DYybiuMqjGyqqj2kQ3s1Y5NynVy_PUf-A_cpW2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881518796</pqid></control><display><type>article</type><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dev, Kapil ; Suthar, Om P.</creator><creatorcontrib>Dev, Kapil ; Suthar, Om P.</creatorcontrib><description>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number,
Ma
L
c and
Ma
E
c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0172723</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Boundary conditions ; Chebyshev approximation ; Crystal growth ; Darcy number ; Fluid dynamics ; Industrial applications ; Liquid surfaces ; Marangoni convection ; Numerical analysis ; Physics ; Porous media ; Stability analysis ; Surface tension</subject><ispartof>Physics of fluids (1994), 2023-10, Vol.35 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</citedby><cites>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</cites><orcidid>0000-0001-7380-3785 ; 0000-0002-3433-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Dev, Kapil</creatorcontrib><creatorcontrib>Suthar, Om P.</creatorcontrib><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><title>Physics of fluids (1994)</title><description>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number,
Ma
L
c and
Ma
E
c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Chebyshev approximation</subject><subject>Crystal growth</subject><subject>Darcy number</subject><subject>Fluid dynamics</subject><subject>Industrial applications</subject><subject>Liquid surfaces</subject><subject>Marangoni convection</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Porous media</subject><subject>Stability analysis</subject><subject>Surface tension</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhYMoOI4uvEHAlUKP-elOOksdxlEYEUTXTTo_kqEnaZNuYXbewVN4Dm_iSexmZi0UVFF8vHr1ADjHaIYRo9fFDGFOOKEHYIJRKTLOGDscZ44yxig-BicprRFCVBA2Ac_LJtSygamTtWtct4XBwtufby-j_v38epRR-rfgHVTBfxjVueCh81CO5VLoYmidgm2IoU9wY7TrN6fgyMommbN9n4LXu8XL_D5bPS0f5jerTBFBuswORrHUhJdUKI4VpbqodY44zonldZmb2pBcKWyHJVGqplZjXQgprNGYGzoFFzvdNob33qSuWoc--uFkRcoSF7jkgg3U5Y5SMaQUja3a6DYybiuMqjGyqqj2kQ3s1Y5NynVy_PUf-A_cpW2I</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Dev, Kapil</creator><creator>Suthar, Om P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7380-3785</orcidid><orcidid>https://orcid.org/0000-0002-3433-4178</orcidid></search><sort><creationdate>202310</creationdate><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><author>Dev, Kapil ; Suthar, Om P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Chebyshev approximation</topic><topic>Crystal growth</topic><topic>Darcy number</topic><topic>Fluid dynamics</topic><topic>Industrial applications</topic><topic>Liquid surfaces</topic><topic>Marangoni convection</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Porous media</topic><topic>Stability analysis</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Kapil</creatorcontrib><creatorcontrib>Suthar, Om P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dev, Kapil</au><au>Suthar, Om P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number,
Ma
L
c and
Ma
E
c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0172723</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7380-3785</orcidid><orcidid>https://orcid.org/0000-0002-3433-4178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-10, Vol.35 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0172723 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Boundary conditions Chebyshev approximation Crystal growth Darcy number Fluid dynamics Industrial applications Liquid surfaces Marangoni convection Numerical analysis Physics Porous media Stability analysis Surface tension |
title | Global stability of Bénard–Marangoni convection in an anisotropic porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20stability%20of%20B%C3%A9nard%E2%80%93Marangoni%20convection%20in%20an%20anisotropic%20porous%20medium&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Dev,%20Kapil&rft.date=2023-10&rft.volume=35&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0172723&rft_dat=%3Cproquest_scita%3E2881518796%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881518796&rft_id=info:pmid/&rfr_iscdi=true |