Global stability of Bénard–Marangoni convection in an anisotropic porous medium

Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-10, Vol.35 (10)
Hauptverfasser: Dev, Kapil, Suthar, Om P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Dev, Kapil
Suthar, Om P.
description Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number, Ma L c and Ma E c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.
doi_str_mv 10.1063/5.0172723
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0172723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881518796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhYMoOI4uvEHAlUKP-elOOksdxlEYEUTXTTo_kqEnaZNuYXbewVN4Dm_iSexmZi0UVFF8vHr1ADjHaIYRo9fFDGFOOKEHYIJRKTLOGDscZ44yxig-BicprRFCVBA2Ac_LJtSygamTtWtct4XBwtufby-j_v38epRR-rfgHVTBfxjVueCh81CO5VLoYmidgm2IoU9wY7TrN6fgyMommbN9n4LXu8XL_D5bPS0f5jerTBFBuswORrHUhJdUKI4VpbqodY44zonldZmb2pBcKWyHJVGqplZjXQgprNGYGzoFFzvdNob33qSuWoc--uFkRcoSF7jkgg3U5Y5SMaQUja3a6DYybiuMqjGyqqj2kQ3s1Y5NynVy_PUf-A_cpW2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881518796</pqid></control><display><type>article</type><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dev, Kapil ; Suthar, Om P.</creator><creatorcontrib>Dev, Kapil ; Suthar, Om P.</creatorcontrib><description>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number, Ma L c and Ma E c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0172723</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Boundary conditions ; Chebyshev approximation ; Crystal growth ; Darcy number ; Fluid dynamics ; Industrial applications ; Liquid surfaces ; Marangoni convection ; Numerical analysis ; Physics ; Porous media ; Stability analysis ; Surface tension</subject><ispartof>Physics of fluids (1994), 2023-10, Vol.35 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</citedby><cites>FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</cites><orcidid>0000-0001-7380-3785 ; 0000-0002-3433-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Dev, Kapil</creatorcontrib><creatorcontrib>Suthar, Om P.</creatorcontrib><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><title>Physics of fluids (1994)</title><description>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number, Ma L c and Ma E c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Chebyshev approximation</subject><subject>Crystal growth</subject><subject>Darcy number</subject><subject>Fluid dynamics</subject><subject>Industrial applications</subject><subject>Liquid surfaces</subject><subject>Marangoni convection</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Porous media</subject><subject>Stability analysis</subject><subject>Surface tension</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhYMoOI4uvEHAlUKP-elOOksdxlEYEUTXTTo_kqEnaZNuYXbewVN4Dm_iSexmZi0UVFF8vHr1ADjHaIYRo9fFDGFOOKEHYIJRKTLOGDscZ44yxig-BicprRFCVBA2Ac_LJtSygamTtWtct4XBwtufby-j_v38epRR-rfgHVTBfxjVueCh81CO5VLoYmidgm2IoU9wY7TrN6fgyMommbN9n4LXu8XL_D5bPS0f5jerTBFBuswORrHUhJdUKI4VpbqodY44zonldZmb2pBcKWyHJVGqplZjXQgprNGYGzoFFzvdNob33qSuWoc--uFkRcoSF7jkgg3U5Y5SMaQUja3a6DYybiuMqjGyqqj2kQ3s1Y5NynVy_PUf-A_cpW2I</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Dev, Kapil</creator><creator>Suthar, Om P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7380-3785</orcidid><orcidid>https://orcid.org/0000-0002-3433-4178</orcidid></search><sort><creationdate>202310</creationdate><title>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</title><author>Dev, Kapil ; Suthar, Om P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f0171ad27839c71c33d5bd407142f7b84ebe24cc1fd402ccb3fd1d59a9fed17e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Chebyshev approximation</topic><topic>Crystal growth</topic><topic>Darcy number</topic><topic>Fluid dynamics</topic><topic>Industrial applications</topic><topic>Liquid surfaces</topic><topic>Marangoni convection</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Porous media</topic><topic>Stability analysis</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev, Kapil</creatorcontrib><creatorcontrib>Suthar, Om P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dev, Kapil</au><au>Suthar, Om P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global stability of Bénard–Marangoni convection in an anisotropic porous medium</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number, Ma L c and Ma E c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0172723</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7380-3785</orcidid><orcidid>https://orcid.org/0000-0002-3433-4178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-10, Vol.35 (10)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0172723
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Boundary conditions
Chebyshev approximation
Crystal growth
Darcy number
Fluid dynamics
Industrial applications
Liquid surfaces
Marangoni convection
Numerical analysis
Physics
Porous media
Stability analysis
Surface tension
title Global stability of Bénard–Marangoni convection in an anisotropic porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20stability%20of%20B%C3%A9nard%E2%80%93Marangoni%20convection%20in%20an%20anisotropic%20porous%20medium&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Dev,%20Kapil&rft.date=2023-10&rft.volume=35&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0172723&rft_dat=%3Cproquest_scita%3E2881518796%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881518796&rft_id=info:pmid/&rfr_iscdi=true