Global stability of Bénard–Marangoni convection in an anisotropic porous medium

Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-10, Vol.35 (10)
Hauptverfasser: Dev, Kapil, Suthar, Om P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface tension is essential in many industrial applications, especially where the liquid surface is in contact with the environment, such as crystal growth, semiconductor manufacturing, and welding. The present article reports a numerical analysis of convection induced by the combined effects of buoyancy force and surface tension in an infinitely extended horizontal fluid-saturated anisotropic porous layer with high permeability. We assume that the bottom boundary is rigid and the top is exposed to the air. Biot numbers establish general thermal conditions at both ends instead of commonly used adiabatic and isothermal boundary conditions. The anisotropy of the porous structure results in thermal and mechanical anisotropy parameters while examining layer's stability. The Chebyshev Tau technique yields the critical Marangoni number, Ma L c and Ma E c, representing linear and energy stability boundaries. We compare the constraints obtained from linear and energy analyses and conclude that the energy bounds for the current problem are less than linear bounds, indicating subcritical instabilities may exist. It is also observed that thermal anisotropy and Biot numbers stabilize the system. In contrast, mechanical anisotropy and the Darcy number advance the onset of convection. The existing results of limiting cases of the present problem are recovered with remarkable accuracy.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0172723