Numerical investigation of the flow characteristics of supercritical carbon dioxide in a high-speed rotating annular gap

The flow characteristics of Taylor–Couette–Poiseuille flow induced by supercritical carbon dioxide in an annular gap play a pivotal role in determining the overall performance of the rotating machinery. To accurately design the structural components of rotating machinery and enhance its efficiency,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-10, Vol.35 (10)
Hauptverfasser: Lu, Fengxiong, Guo, Chaohong, Zhang, Shijie, Chen, Buze, Xu, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flow characteristics of Taylor–Couette–Poiseuille flow induced by supercritical carbon dioxide in an annular gap play a pivotal role in determining the overall performance of the rotating machinery. To accurately design the structural components of rotating machinery and enhance its efficiency, this study employs the large eddy simulation method to investigate the flow behavior of Taylor–Couette–Poiseuille flow with supercritical carbon dioxide within an annular gap. The results reveal that vortices are predominantly generated near the inner wall. Initially, the flow exhibits small swirl vortices, spiral ring vortices, and annular vortices along the flow direction. As the flow progresses, these small vortices at the inlet region transition into hairpin swirl vortices. Finally, turbulent flow disturbances lead to the fragmentation and merging of spiral and annular vortices, resulting in a flow field characterized by high-frequency hairpin swirl vortices and small vortices with strong randomness. An increase in the swirl number causes the initial position of the Taylor vortex to shift toward the inlet, while the turbulent kinetic energy is more active on the outer wall side than the inner wall side. Along the flow direction, the vortices experience a developmental process involving stabilization, diffusion, and mixing. Varying the radius ratio affects the magnitude of vorticity, reduces velocity fluctuations in a regular pattern, and alters the distribution of helicity bands from wide and sparse to compact and dense groupings. As the axial Reynolds number increases, the magnitude of vortices grows, leading to more severe velocity fluctuations and the transformation of the helicity bands from a regular annular pattern to fluctuating vortices bands, accompanied by a decrease in helicity.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0170016