Three-dimensional distribution and propagation of dislocations in β-Ga2O3 revealed by Borrmann effect x-ray topography
Synchrotron radiation x-ray topography (XRT) in a transmission configuration based on the Borrmann effect (BE) was carried out to observe characteristic dislocation structures and three-dimensional distribution and propagation of dislocations in β-Ga2O3 grown via the edge-defined film-fed growth (EF...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-10, Vol.134 (15) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synchrotron radiation x-ray topography (XRT) in a transmission configuration based on the Borrmann effect (BE) was carried out to observe characteristic dislocation structures and three-dimensional distribution and propagation of dislocations in β-Ga2O3 grown via the edge-defined film-fed growth (EFG) method. Substrates with a range of surface orientations of (001), (010), and
(
2
¯
01
), cut perpendicular or parallel to the ⟨010⟩ growth direction of the EFG, were observed to understand the whole picture of dislocations distributed in the bulk crystals. Using the (001)-oriented substrate, we found characteristic dislocation structures such as dislocation helices, damage-related (001)-plane dislocation networks, and tangled dislocation complexes, which exist universally in EFG crystals but have rarely been reported before. A careful measurement of the dislocation length in BE-XRT images taken with different g-vectors allows us to determine the crystal plane on which a dislocation lies. The BE-XRTs taken from the (010)-oriented and
(
2
¯
01
)-oriented substrates suggested that the dislocations propagating along the [010] growth direction were dominant. Most of these b-axis threading dislocations had a Burgers vector of [010] or [001], and they tended to align in the (100) plane. The BE-XRT observations in this study provide valuable knowledge for understanding the structure and character of dislocations in β-Ga2O3. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0169526 |