Development and application of a three-dimensional pseudo-Voigt function for muon spin relaxation analysis of weakly magnetic materials

We present a three-dimensional pseudo-Voigt function to analyze muon spin relaxation (μSR) in weakly magnetic materials. Our approach approximates the Voigt function by superimposing Gaussian and Lorentzian functions using a one-dimensional method proposed by Di Rocco and Cruzado [Acta Phys. Pol., A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-05, Vol.95 (5)
Hauptverfasser: Umar, M. D., Hariyanto, H. L., Absor, M. A. U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a three-dimensional pseudo-Voigt function to analyze muon spin relaxation (μSR) in weakly magnetic materials. Our approach approximates the Voigt function by superimposing Gaussian and Lorentzian functions using a one-dimensional method proposed by Di Rocco and Cruzado [Acta Phys. Pol., A 122, 666 (2012)]. We derive the peak of the Voigt function analytically and express the Half Width at Half Maximum (HWHM) of the Voigt function as a function of the HWHMs of the Gaussian and Lorentzian functions. We compare the pseudo-Voigt function to the exact Voigt function and find a maximum normalized discrepancy of ∼20% at the tail of the distribution function, depending on the ratio of Lorentzian to Gaussian HWHMs and internal magnetic field. We apply the derived three-dimensional pseudo-Voigt function to calculate μSR functions for zero- and longitudinal-field experiments and use them to fit μSR time spectra of La2−xSrxCuO4 with 2.4% Sr, employing a strong collision model with the static-based pseudo-Voigt muon spin relaxation function as the initial condition. Our results show that the Gaussian- and Lorentzian-fitted parameters and fluctuation rate are in good agreement with results from the exact Voigt function for a temperature range of 30–200 K, with the deviation of Gaussian and Lorentzian width parameters reaching ∼0.15 G below 30 K.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0156751