Numerical simulation of modified nonlinear Schrodinger equation and turbulence generation

This article presents a numerical model to study wave turbulence in fluids. The model equation is derived by incorporating energy conservation (along with the usual fluid equations of a compressible flow), and the source of nonlinearity is the rise in temperature due to the acoustic wave's high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-07, Vol.35 (7)
Hauptverfasser: Kumar, Praveen, Nandal, P., Uma, R., Sharma, R. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a numerical model to study wave turbulence in fluids. The model equation is derived by incorporating energy conservation (along with the usual fluid equations of a compressible flow), and the source of nonlinearity is the rise in temperature due to the acoustic wave's high amplitude. The nonlinear Schrödinger (NLS) and modified nonlinear Schrödinger (MNLS) equations have been derived and then solved numerically. A numerical simulation of the MNLS equation is used for investigating the turbulence generation and a semi-analytical method to understand the physics of localized structures of nonlinear waves. The numerical simulation is based on a pseudo-spectral approach to resolve spatial regimes, a finite difference method for temporal evolution. The results show a periodic pattern viz. Fermi–Pasta–Ulam (FPU) recurrence for NLS, while turbulence generation breaks down the FPU recurrence in MNLS. The turbulent power spectrum in the inertial sub-range approximately follows the Kolmogorov–Zakharov scaling ( ∼ k − 1.2).
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0155116