Reducing radar cross section of flat metallic targets using checkerboard metasurface: Design, analysis, and realization
Aiming at the large-scale application of metasurface in the field of radar stealth, we present a hybrid resonance-based and dispersion substrate integrated checkerboard metasurface (CMS) for reducing the radar cross section (RCS) of flat metallic targets. Considering the frequency-dependent characte...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-07, Vol.134 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the large-scale application of metasurface in the field of radar stealth, we present a hybrid resonance-based and dispersion substrate integrated checkerboard metasurface (CMS) for reducing the radar cross section (RCS) of flat metallic targets. Considering the frequency-dependent characteristics of such a dispersion material, a pair of single and dual resonant artificial magnetic conductor meta-atoms with the modified “crusades-like” cell topologies is employed to maximize the operating bandwidth; besides, a comprehensive and thorough investigation on the resonance mechanism is conducted in this paper to provide an intuitive physical insight of meta-atoms’ reflection responses. By comparing the predicted results with simulations, the quasi-periodic effect is introduced to explain the frequency shift of 10 dB RCS reduction bandwidth. In the implementation procedure, a prototype of the designed RCS reducer with a total dimension of 180 × 180 mm2 is fabricated and measured, the 10 dB RCS reduction bandwidth of theoretical simulation and experimental measurement are basically consistent, and the performance improvement of 8 dB RCS reduction in the experimental results can be attributed to the dispersion effects of the dielectric substrate. With a better figure of merit, our efforts may serve as a useful exemplar for the economical CMS architecture in radar evasive applications. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0154916 |