Adsorption of melting deoxyribonucleic acid
The melting of a homopolymer double-stranded (ds) deoxyribonucleic acid (DNA) in the dilute limit is studied numerically in the presence of an attractive and impenetrable surface on a simple cubic lattice. The two strands of the DNA are modeled using two self-avoiding walks, capable of interacting a...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-06, Vol.35 (6) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The melting of a homopolymer double-stranded (ds) deoxyribonucleic acid (DNA) in the dilute limit is studied numerically in the presence of an attractive and impenetrable surface on a simple cubic lattice. The two strands of the DNA are modeled using two self-avoiding walks, capable of interacting at complementary sites, thereby mimicking the base pairing. The impenetrable surface is modeled by restricting the DNA configurations at the
z
≥
0 plane, with attractive interactions for monomers at z = 0. Further, we consider two variants for z = 0 occupations by ds segments, where one or two surface interactions are counted. This consideration has significant consequences, to the extent of changing the stability of the bound phase in the adsorbed state. Interestingly, adsorption changes from critical to first-order with a modified exponent on coinciding with the melting transition. For simulations, we use the pruned and enriched Rosenbluth algorithm. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0151155 |