Extraordinary permittivity characterization of 4H SiC at millimeter-wave frequencies

For millimeter-wave power applications, GaN high-electron mobility transistors (HEMTs) are often grown epitaxially on a high-purity semi-insulating c-axis 4H-SiC substrate. For these anisotropic hexagonal materials, the design and modeling of microstrip and coplanar interconnects require detailed kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-07, Vol.123 (1)
Hauptverfasser: Li, Lei, Reyes, Steve, Asadi, Mohammad Javad, Fay, Patrick, Hwang, James C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For millimeter-wave power applications, GaN high-electron mobility transistors (HEMTs) are often grown epitaxially on a high-purity semi-insulating c-axis 4H-SiC substrate. For these anisotropic hexagonal materials, the design and modeling of microstrip and coplanar interconnects require detailed knowledge of both the ordinary permittivity ε⊥ and the extraordinary permittivity εǁ perpendicular and parallel, respectively, to the c-axis. However, conventional dielectric characterization techniques make it difficult to measure εǁ alone or to separate εǁ from ε⊥. As a result, there is little data for εǁ, especially at millimeter-wave frequencies. This work demonstrates techniques for characterizing εǁ of 4H SiC using substrate-integrated waveguides (SIWs) or SIW resonators. The measured εǁ on seven SIWs and eleven resonators from 110 to 170 GHz is within ±1% of 10.2. Because the SIWs and resonators can be fabricated on the same SiC substrate together with HEMTs and other devices, they can be conveniently measured on-wafer for precise material-device correlation. Such permittivity characterization techniques can be extended to other frequencies, materials, and orientations.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0148623