Topologically assisted optimization for rotor design
We develop and apply a novel shape optimization exemplified for a two-blade rotor with respect to the figure of merit. This topologically assisted optimization contains two steps. First, a global evolutionary optimization is performed for the shape parameters, and then a topological analysis reveals...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-05, Vol.35 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop and apply a novel shape optimization exemplified for a two-blade rotor with respect to the figure of merit. This topologically assisted optimization contains two steps. First, a global evolutionary optimization is performed for the shape parameters, and then a topological analysis reveals the local and global extrema of the objective function directly from the data. This non-dimensional objective function compares the achieved thrust with the required torque. Rotor blades have a decisive contribution to the performance of quadcopters. A two-blade rotor with pre-defined chord length distribution is chosen as the baseline model. The simulation is performed in a moving reference frame with a
k
−
ω turbulence model for the hovering condition. The rotor shape is parameterized by the twist angle distribution. The optimization of this distribution employs a genetic algorithm. The local maxima are distilled from the data using a novel topological analysis inspired by discrete scalar-field topology. We identify one global maximum to be located in the interior of the data and five further local maxima related to errors from non-converged simulations. The interior location of the global optimum suggests that small improvements can be gained from further optimization. The local maxima have a small persistence, i.e., disappear under a small ε perturbation of the figure of merit values. In other words, the data may be approximated by a smooth mono-modal surrogate model. Thus, the topological data analysis provides valuable insight for optimization and surrogate modeling. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0145941 |