234 nm far-ultraviolet-C light-emitting diodes with polarization-doped hole injection layer
Far-ultraviolet-C (far-UVC) light-emitting diodes (LEDs) with an emission wavelength of 234 nm with different polarization-doped AlGaN hole injection layers (HILs) are compared regarding their emission power, voltage, and leakage current. The influence of the thickness of the polarization-doped laye...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-05, Vol.122 (19) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Far-ultraviolet-C (far-UVC) light-emitting diodes (LEDs) with an emission wavelength of 234 nm with different polarization-doped AlGaN hole injection layers (HILs) are compared regarding their emission power, voltage, and leakage current. The influence of the thickness of the polarization-doped layer (PDL), an additional Mg doping of the PDL, as well as a combination of a PDL with a conventionally Mg-doped AlGaN HIL will be discussed. The different PDL thicknesses show nearly no influence on the emission power or voltage. However, the leakage current of the LEDs below the turn-on voltage decreases with an increasing thickness of the PDL. In contrast, an additional Mg doping of the PDL ([Mg] ∼ 1.5 × 1019 cm−3) results in a fivefold decrease in the emission power at an unchanged voltage and leakage current. Finally, a combination of a PDL and a conventionally Mg-doped AlGaN layer ([Mg] ∼ 1.5 × 1019 cm−3) as a HIL shows also a similar emission power and voltage compared to the single PDL, but the leakage current increases. Based on these optimizations, 234 nm LEDs were realized with a maximum external quantum efficiency of 1% at 20 mA, an emission power of 4.7 mW, and a voltage of 9.0 V at 100 mA. This shows that the polarization doping concept is well suited to realize far-UVC LEDs with improved performance compared to LEDs with a conventionally Mg-doped p-side. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0143661 |