Pb, Bi, and rare earth free X6R barium titanate–sodium niobate ceramics for high voltage capacitor applications
0.9Ba(Ti1−xMgx)O3−x-0.1NaNbO3 (BTNN-100xMg) solid solutions are investigated with a view to developing Bi, Pb, and rare earth free, high voltage multilayer ceramic capacitors. Mg doping on the B-site significantly reduced the electronic conductivity and resulted in ceramics that could withstand a pu...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-04, Vol.122 (14) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 0.9Ba(Ti1−xMgx)O3−x-0.1NaNbO3 (BTNN-100xMg) solid solutions are investigated with a view to developing Bi, Pb, and rare earth free, high voltage multilayer ceramic capacitors. Mg doping on the B-site significantly reduced the electronic conductivity and resulted in ceramics that could withstand a pulsed unipolar field of >300 kV/cm (Emax) to give a recoverable energy density of 3.4 J/cm3 at 82.6% efficiency for x = 0.01. The high Emax is accompanied by a high dielectric permittivity (ε′ ∼ 1700 at room temperature) with temperature-stable dielectric permittivity of Δε/ε298K ≤ ±15% and loss tangent tan δ < 0.02 from 116 to 378 K, corresponding to an X6R designation in the Electronic Industry Alliance codes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0142200 |