Big-bang limit of 2 + 1 gravity and Thurston boundary of Teichmüller space

We study the asymptotic behavior of the solution curves of the dynamics of spacetimes of the topological type Σp×R, p > 1, where Σp is a closed Riemann surface of genus p, in the regime of 2 + 1 dimensional classical general relativity. The configuration space of the gauge fixed dynamics is ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-11, Vol.64 (11)
1. Verfasser: Mondal, Puskar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of the solution curves of the dynamics of spacetimes of the topological type Σp×R, p > 1, where Σp is a closed Riemann surface of genus p, in the regime of 2 + 1 dimensional classical general relativity. The configuration space of the gauge fixed dynamics is identified with the Teichmüller space (TΣp≈R6p−6) of Σp. Utilizing the properties of the Dirichlet energy of certain harmonic maps, estimates derived from the associated elliptic equations in conjunction with a few standard results of the theory of the compact Riemann surfaces, we prove that every non-trivial solution curve runs off the edge of the Teichmüller space at the limit of the big bang singularity and approaches the space of projective measured laminations/foliations (PMLPMF), the Thurston boundary of the Teichmüller space.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0136631