Electron transfer in strong-field three-body fragmentation of ArKr2 trimers

We experimentally studied the three-body fragmentation dynamics of a noble gas cluster (ArKr2) upon its multiple ionization by an intense femtosecond laser pulse. The three-dimensional momentum vectors of correlated fragmental ions were measured in coincidence for each fragmentation event. A novel c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-03, Vol.158 (9), p.094302-094302
Hauptverfasser: Lu, Chenxu, Shi, Menghang, Pan, Shengzhe, Zhou, Lianrong, Qiang, Junjie, Lu, Peifen, Zhang, Wenbin, Wu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We experimentally studied the three-body fragmentation dynamics of a noble gas cluster (ArKr2) upon its multiple ionization by an intense femtosecond laser pulse. The three-dimensional momentum vectors of correlated fragmental ions were measured in coincidence for each fragmentation event. A novel comet-like structure was observed in the Newton diagram of the quadruple-ionization-induced breakup channel of ArKr24+→ Ar+ + Kr+ + Kr2+. The concentrated head part of the structure mainly originates from the direct Coulomb explosion process, while the broader tail part of the structure stems from a three-body fragmentation process involving electron transfer between the distant Kr+ and Kr2+ ion fragments. Due to the field-driven electron transfer, the Coulomb repulsive force of the Kr2+ and Kr+ ions with respect to the Ar+ ion undergoes exchange, leading to changes in the ion emission geometry in the Newton plot. An energy sharing among the separating Kr2+ and Kr+ entities was observed. Our study indicates a promising approach for investigating the strong-field-driven intersystem electron transfer dynamics by using the Coulomb explosion imaging of an isosceles triangle van der Waals cluster system.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0134833