Long-term degradation of high molar mass poly(ethylene oxide) in a turbulent pilot-scale pipe flow

The long-term drag reduction capability of poly(ethylene oxide) with a nominal molar weight of M w = 4 × 10 6 g/mol dissolved in water was investigated in a pilot-scale pipe flow device (inner diameter of test section 26 mm) at a Reynolds number of 105. A total loss of the initially high (75%) drag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-02, Vol.35 (2)
Hauptverfasser: Müller, H. W., Brandfellner, L., Bismarck, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The long-term drag reduction capability of poly(ethylene oxide) with a nominal molar weight of M w = 4 × 10 6 g/mol dissolved in water was investigated in a pilot-scale pipe flow device (inner diameter of test section 26 mm) at a Reynolds number of 105. A total loss of the initially high (75%) drag reduction capability was observed over a flow distance of several ∼10 km while the molar weight of the polymer was still M w ∼ 5 × 10 5 g/mol. Mechanical degradation in the turbulent flow as well as ageing of the polymer dissolved in water caused this loss in drag reduction capability. A simple ansatz of two independent, statistical polymer chain scission mechanisms was used to describe the polymer degradation empirically using a modified Brostow model. This empirical description was applied successfully and suggested that the polymer exhibited at least 15 cleavage points for mechanical degradation.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0131410