Electrically tuning near-field heat flux using metal–oxide–semiconductor structure considering gradient dielectric function distribution
We build a model to determine the dependency of near-field heat flux on bias voltage using the metal–oxide–semiconductor structures considering gradient distribution of dielectric function. Quantitative dependency of near-field heat flux exchanged by two biased metal–oxide–semiconductor structures o...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-10, Vol.121 (18) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We build a model to determine the dependency of near-field heat flux on bias voltage using the metal–oxide–semiconductor structures considering gradient distribution of dielectric function. Quantitative dependency of near-field heat flux exchanged by two biased metal–oxide–semiconductor structures on bias voltage is established. The distribution of carrier density and the resultant dielectric function in the semiconductor layer caused by the bias are determined. The corresponding near-field heat flux is calculated using an effective multilayer model. Significant tuning performance is demonstrated, which is due to the increase or decrease in high-frequency surface polariton states induced by the injection or extraction of major carriers. This work deepens the understanding of electrical control of near-field heat transfer with metal–oxide–semiconductor structures, promising for nanoscale thermal management devices and thermal circuits. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0123623 |