High-density salt & pepper noise removal using machine learning

This paper proposes an additional ‘Median Layer’ to the existing Convolutional Neural Network (CNN).The work primarily focuses on removing ‘High Density Impulse Noise’ present in an image. The proposed median layer performs median filtering on all feature channels. The developed network is an end-to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sabeenian, R. S., Paramasivam, M. E., Akilandeswari, J., Iyyanar, P., Naveenkumar, A., Manjunathan, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an additional ‘Median Layer’ to the existing Convolutional Neural Network (CNN).The work primarily focuses on removing ‘High Density Impulse Noise’ present in an image. The proposed median layer performs median filtering on all feature channels. The developed network is an end-to-end network that does not require any non-trivial preprocessing tasks. Based on the experiments performed, results show that, by inserting a median layer to a CNN, the proposed architecture has given convincing results, when compared to the existing approaches.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0119389